Markov Chain Monte Carlo Methods in Financial Econometrics

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov Chain Monte Carlo Simulation Methods in Econometrics

We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the presentation and explanation of applications to important models that...

متن کامل

Markov chain Monte Carlo methods in biostatistics.

Appropriate models in biostatistics are often quite complicated. Such models are typically most easily fit using Bayesian methods, which can often be implemented using simulation techniques. Markov chain Monte Carlo (MCMC) methods are an important set of tools for such simulations. We give an overview and references of this rapidly emerging technology along with a relatively simple example. MCM...

متن کامل

Advances in Markov chain Monte Carlo methods

Probability distributions over many variables occur frequently in Bayesian inference, statistical physics and simulation studies. Samples from distributions give insight into their typical behavior and can allow approximation of any quantity of interest, such as expectations or normalizing constants. Markov chain Monte Carlo (MCMC), introduced by Metropolis et al. (1953), allows sampling from d...

متن کامل

Sequentially Interacting Markov Chain Monte Carlo Methods

We introduce a novel methodology for sampling from a sequence of probability distributions of increasing dimension and estimating their normalizing constants. These problems are usually addressed using Sequential Monte Carlo (SMC) methods. The alternative Sequentially Interacting Markov Chain Monte Carlo (SIMCMC) scheme proposed here works by generating interacting non-Markovian sequences which...

متن کامل

Particle Markov chain Monte Carlo methods

Markov chain Monte Carlo and sequential Monte Carlo methods have emerged as the two main tools to sample from high dimensional probability distributions.Although asymptotic convergence of Markov chain Monte Carlo algorithms is ensured under weak assumptions, the performance of these algorithms is unreliable when the proposal distributions that are used to explore the space are poorly chosen and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Financial Markets and Portfolio Management

سال: 2005

ISSN: 1934-4554,2373-8529

DOI: 10.1007/s11408-005-6459-1